Project: Select any 2 of the following projects
Project: Battery Monitoring System
Objective: Measure and display the voltage of a simulated battery pack.
The project will result in a fully functional battery monitoring system capable of accurately measuring and displaying the voltage of a simulated battery pack. Using the STM32F103C8T6 microcontroller, the system will interface with the Voltage Detection Sensor Module to acquire voltage data. This data will be processed and displayed in real-time on the JHD162G M7 LCD display. The outcome includes a reliable and user-friendly interface for monitoring battery voltage, suitable for educational purposes in understanding the fundamentals of battery management in EV systems.
Project: Current Monitoring System
Objective: Measure and display the current drawn by a simulated EV motor.
Brief: This project will result in a current monitoring system designed to accurately measure and display the current drawn by a simulated EV motor. Utilizing the STM32F103C8T6 microcontroller and ACS712 current sensor, the system will capture real-time current data. The data will be processed and presented on the JHD162G M7 LCD display, enabling users to monitor and analyze current consumption. The outcome includes a functional setup for understanding and managing current requirements in EV applications, enhancing practical knowledge of electric vehicle powertrain dynamics.
Project: Energy Consumption Display
Objective: Calculate and display the energy consumption of a simulated EV system.
The project outcome will be an energy consumption display system capable of calculating and presenting the energy usage of a simulated EV system. Using the STM32F103C8T6 microcontroller, combined with the ACS712 current sensor and Voltage Detection Sensor Module, the system will measure both current and voltage.
Project: Battery Overcurrent Protection
Objective: Detect and respond to overcurrent situations in a simulated battery system.
This project aims to develop a battery overcurrent protection system for safeguarding a simulated battery system in EV applications. Using the STM32F103C8T6 microcontroller and ACS712 current sensor, the system will continuously monitor current levels. Upon detecting an overcurrent condition, the system will activate visual alerts using the LED System and audible alerts through the 5V Passive Buzzer. The outcome includes a reliable protection mechanism that enhances safety and reliability in EV battery systems, demonstrating practical implementation of current monitoring and protection measures.
Project: Simulated CAN Bus and PWM Communication
Objective: This project allows students to understand the implementation and working on the CAN based communication.
This project allows students to understand the implementation and working on the CAN based communication in an embedded system. The students can simulate the CAN data based on the sensor readings their will recieve and create CAN packages for communication. Similarly, the students will work on the motor control signals and will learn how one can transmit these motor signals in CAN protocols and perform communication.